MINIMUM DUCTILE CONFINEMENT REQUIREMENTS IN REINFORCED CONCRETE FRAMES PROTECTED WITH HYSTERETIC ENERGY DISSIPATION DEVICES

Authors

  • Horacio de Jesús Nangullasmú Hernández Universidad Autónoma Metropolitana
  • Arturo Tena Colunga Universidad Autónoma Metropolitana

DOI:

https://doi.org/10.18867/ris.95.381

Abstract

In this paper the authors summarize results obtained from pushover analyses for reinforced concrete intermediate moment-resisting frames (RC-IMRFs) with hysteretic energy dissipation devices (HEDDs), mounted in chevron steel bracing. The global structural efficiency was evaluated for the RC-IMRFs designed with minimum ductile confinement requirements as an additional design request specified in the reinforced concrete guidelines of Mexican codes. Moment-resisting frames ranged from 5 to 25 stories and were designed using diverse stiffness ratios between frame system and the whole structure (α), as well as stiffness ratios between the HEDD and the supporting brace (β). A post to pre yielding stiffness ratio (k2/kEL) of 5% for the hysteretic devices was also considered. An angle of inclination of the chevron braces with respect to the horizontal axis θ= 45° was taken into account. The structural behavior of RC-IMRFs with these extra requirements is much improved with respect of the typical detailing established in Mexican codes for RC-IMRFs. Updated seismic global design parameters related to global ductility (Q) and overstrength (R) that such structures could develop were assessed. Finally, comments related to the use of minimum ductile confinement requirements are exposed with the main objective to induce a “practical” design procedure for this kind of structures.

Downloads

Download data is not yet available.

References

Calado, L, J Proença, M Espinha y C Castiglioni (2013), “Hysteretic behaviour of dissipative bolted fuses for earthquake resistant steel frames”, Journal of Constructional Steel Research, Vol. 85, pp. 151-162. http://dx.doi.org/10.1016/j.jcsr.2013.02.016

Castiglioni, C, A Kanyilmaz y L Calado (2012), “Experimental analysis of seismic resistant composite steel frames with dissipative devices”, Journal of Constructional Steel Research, Vol. 76, pp. 1-12. http://dx.doi.org/10.1016/j.jcsr.2012.03.027

Ciampi, V, V Paolone y M De Angelis (1992), “On the seismic design of dissipative bracings”, Memorias, Tenth World Conference on Earthquake Engineering, Madrid, Spain, 4133-4138. ISBN 90 5410 060 5

Ciampi, V, M De Angelis y V Paolone (1995), “Design of yielding or friction-based dissipative bracings for seismic protection of buildings”, Engineering Structures, Vol. 17, No. 5, pp. 381-391. http://dx.doi.org/10.1016/0141-0296(95)00021-X

Chan, R y F Albermani (2008), “Experimental study of steel slit damper for passive energy dissipation”, Engineering Structures, Vol. 30, pp. 1058-1066. http://dx.doi.org/10.1016/j.engstruct.2007.07.005

Esteva, L y L Veras (1998), “Criterios de ductilidad y desempeño para el diseño sísmico de estructuras con disipadores histeréticos de energía”, Memorias, V Simposio Nacional de Ingeniería Sísmica, Toluca, septiembre.

Foti, D, L M Bozzo y F López-Almansa (1998), “Numerical efficiency assessment of energy dissipators for seismic protection of buildings”, Earthquake Engineering and Structural Dynamics, Vol. 27, pp. 543-556. ISSN: 0098-8847

Ghabraie, K, R Chan, X Huang y Y Xie (2010), “Shape optimization of metallic yielding devices for passive mitigation of seismic energy”, Engineering Structures, Vol. 32, pp. 2258-2267. http://dx.doi.org/10.1016/j.engstruct.2010.03.028

Hanson, R D (1993), “Supplemental damping for improved seismic performance”, Earthquake Spectra, Vol. 9, No. 3, pp. 319-334. http://dx.doi.org/10.1193/1.1585719

Hanson, R D y T T Soong (2001), “Seismic design with supplemental energy dissipation devices”, Monograph Series MNO-8, Earthquake Engineering Research Institute. ISBN 0943198135

Housner, G W, L A Bergman, T K Caughey, A G Chassiakos, R O Claus,

S F Masri, R E Skelton, T T Soong, B F Spencer y T P Yao (1997), “Structural control: past, present, and future”, Journal of Engineering Mechanics, ASCE, Vol. 123, No. 9, pp. 897–971. http://dx.doi.org/10.1061/(ASCE)0733-9399(1997)123:9(897)

Jara, J, E Miranda y G Ayala (2007), “Parametric study of single-degree-of-freedom systems with energy dissipating devices built on soft soil sites”, Engineering Structures, Vol. 29 , pp. 1398-1413. http://dx.doi.org/10.1016/j.engstruct.2006.08.018

Jara, J (2009), “Seismic response of buildings with energy dissipating systems built in soft soils”, Engineering Structures, Vol. 31 , pp. 1204-1216. http://dx.doi.org/10.1016/j.engstruct.2009.01.015

Karavasilis, T L, S Kerawala y E Hale (2012), “Hysteretic model for steel energy dissipation devices and evaluation of a minimal-damage seismic design approach for steel buildings”, Journal of Constructional Steel Research, Vol. 70, pp. 358-367. http://dx.doi.org/10.1016/j.jcsr.2011.10.010

Lin, Y Y, M H Tsai, J S Hwang y K C Chang (2003), “Direct displacement-based design for building with passive energy dissipation systems”, Engineering Structures, Vol. 25, pp. 25–37. http://dx.doi.org/10.1016/S0141-0296(02)00099-8

Mahmoudi, M y M G Abdi (2012), “Evaluating response modification factors of TADAS frames”, Journal of Constructional Steel Research, Vol. 71, pp. 162-170. http://dx.doi.org/10.1016/j.jcsr.2011.10.015

Martínez, E (1994), Comunicación personal con el Ing. Martínez Romero.

Mualla, I y B Belev (2002), “Performance of steel frames with a new friction damper device under earthquake excitation”, Engineering Structures, Vol. 24, pp. 365-371. http://dx.doi.org/10.1016/S0141-0296(01)00102-X

Nangullasmú, H J (2011), “Propuesta de criterios de diseño sísmico conforme a reglamento para marcos no dúctiles de concreto reforzado con disipadores histeréticos”, Tesis de Maestría, Posgrado en Ingeniería Estructural, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana Azcapotzalco, México.

NTCC-04 (2004), “Normas Técnicas Complementarias para Diseño de Estructuras de Concreto”, Gaceta Oficial del Distrito Federal, Tomo II, No. 103-BIS, octubre.

NTCM-04 (2004), “Normas Técnicas Complementarias para Diseño de Estructuras Metálicas”, Gaceta Oficial del Distrito Federal, Tomo II, No. 103-BIS, octubre.

NTCS-04 (2004), “Normas Técnicas Complementarias para Diseño por Sismo”, Gaceta Oficial del Distrito Federal, Tomo II, No. 103-BIS, octubre.

Oh, S H, Y J Kim y H S Ryu (2009), “Seismic performance of steel structures with slit dampers”, Engineering Structures, Vol. 31, pp. 1997–2008. http://dx.doi.org/10.1016/j.engstruct.2009.03.003

Park, R y T Paulay (1986), Estructuras de Concreto Reforzado, Limusa, México. ISBN-13: 9789681801007

Prakash, V, G H Powell y F C Fillipou (1992), “DRAIN-2DX: base

program user guide”, Report No. UBC/SEMM-92/29, Department of Civil Engineering, University of California at Berkeley.

Rai, D, P Annam y T Pradhan (2013), “Seismic testing of steel braced frames with aluminum shear yielding dampers”, Engineering Structures, Vol. 46, pp. 737-747. http://dx.doi.org/10.1016/j.engstruct.2012.08.027

Riobóo, J M (1995), “Estructuras de concreto”, Memorias, Simposio Internacional: La ingeniería civil a 10 años de los sismos de 1985, México, D.F, septiembre, pp. 123-127.

Sahoo, D y D Rai (2010), “Seismic strengthening of non-ductile reinforced concrete frames using aluminum shear links as energy-dissipation devices”, Engineering Structures, Vol. 32, pp. 3548-3557. http://dx.doi.org/10.1016/j.engstruct.2010.07.023

Shih, M H y W P Sung (2005), “A model for hysteretic behavior of rhombic low yield strength steel added damping and stiffness”, Computers and Structures, Vol. 83, pp. 895-908. http://dx.doi.org/10.1016/j.compstruc.2004.11.012

Tehranizadeh, M (2001), “Passive energy dissipation device for typical steel frame building in Iran”, Engineering Structures, Vol. 23, pp. 643-655. http://dx.doi.org/ 10.1016/S0141-0296(00)00082-1

Tena, A y H J Nangullasmú (2013), “Diseño sísmico de marcos no dúctiles de concreto reforzado con disipadores de energía histeréticos. Definición de parámetros de diseño”, Revista Internacional de Desastres Naturales, Accidentes e Infraestructura Civil, Vol. 13, No. 2, pp. 275-299. ISSN 1936-1483

Tena-Colunga, A, H Correa-Arizmendi, J L Luna-Arroyo y G Gatica-Avilés (2008), “Seismic behavior of code-designed medium rise special moment-resisting frame RC buildings in soft soils of Mexico City”, Engineering Structures, Vol. 30, pp. 3681-3707. http://dx.doi.org/10.1016/j.engstruct.2008.05.026

Tena-Colunga, A y H J Nangullasmú-Hernández (2015), “Assessment of seismic design parameters of moment resisting RC braced frames with metallic fuses”, Engineering Structures,Vol. 95,pp. 138-153. http://dx.doi.org/10.1016/j.engstruct.2015.03.062

Vargas, R y M Bruneau (2009), “Analytical response and design of buildings with metallic structural fuses. I”, ASCE Journal of Structural Engineering, Vol. 135, No. 4, pp. 386–393. http://dx.doi.org/10.1061/(ASCE)0733-9445(2009)135:4(386)

Wallace, J y J P Moehle (1989), “BIAX: A computer program for the analysis reinforced concrete sections”, Report No. UCB/SEMM-89/12, Department of Civil Engineering, University of California at Berkeley.

Wu, B, J P Ou y T T Soong (1997), “Optimal placement of energy dissipation devices for three-dimensional structures”, Engineering Structures, Vol. 19, No.2, pp. 113-125. http://dx.doi.org/10.1016/S0141-0296(96)00034-X

Zahrai, S M y A Moslehi (2013), “Analytical study on cyclic behavior of chevron braced frames with shear panel system considering post-yield deformation”, Canadian Journal of Civil Engineering, Vol. 40, pp. 633-643. http://dx.doi.org/10.1139/cjce-2012-0430

Published

2016-12-31

How to Cite

Nangullasmú Hernández, H. de J., & Tena Colunga, A. (2016). MINIMUM DUCTILE CONFINEMENT REQUIREMENTS IN REINFORCED CONCRETE FRAMES PROTECTED WITH HYSTERETIC ENERGY DISSIPATION DEVICES. Journal Earthquake Engineering, (95), 1–32. https://doi.org/10.18867/ris.95.381

Issue

Section

Artículos

Metrics

Most read articles by the same author(s)

1 2 > >>