OPTIMAL TOLERABLE DRIFT FOR IMPORTANT BUILDINGS DESIGN, CONSIDERING CONTENT DAMAGE
DOI:
https://doi.org/10.18867/ris.114.683Keywords:
tolerable maximum drift, optimal design drift, content damage, school buildings, expected total cost, life-cycleAbstract
A methodology is presented to determine the optimal value of the maximum interstory drift (dOI) that ensures compliance with the Immediate Occupancy (IO) performance level, a requirement for essential structures (Group A) according to the Complementary Technical Norm for Seismic Design (NTC-DS-2023). The methodology is developed in two stages: in the first, the exceedance rate of the structural response is determined by integrating structural fragility curves with the seismic intensity exceedance rate at the site. In the second stage, the total expected cost during the building's lifecycle is evaluated through numerical simulation, with emphasis on economic losses due to damage corresponding to acceleration-sensitive contents. To perform this evaluation, a cost function for content damage is proposed, which considers the maximum floor acceleration and its variation along the building’s height. This function is first formulated at the inventory level and later at the global level. The methodology is applied to a five-story school building constituted by reinforced concrete moment-resisting frames, located in the transition zone of Mexico City. For the structural design four permissible values of dOI are assumed: 0.005, 0.0075, 0.01, and 0.0125. It is found that the maximum interstory drift corresponding to the minimum expected total cost is 0.01, value that exceeds the limit specified by NTC-DS-2023, which is 0.0075 for reinforced concrete frames.
Downloads
References
Alamilla, J. L., Rodríguez, J. A., y Vai, R. (2020). Unification of different approaches to probabilistic seismic hazard analysis. Bulletin of the Seismological Society of America, 110(6), 2816-2827. https://doi.org/10.1785/0120200148
Alamilla, J., y Tolentino, D. (2018). Optimun design and damage control for load sequences. Structural Safety, 72, 54-64. https://doi.org/10.1016/j.strusafe.2017.12.006
American Society of Civil Engineers. (2021). Minimum design loads and associated criteria for buildings and other structures.
Anelli, A., Santa-Cruz, S., Vona, M., Tarque, N., y Laterza, M. (2018). A proactive and resilient seismic risk mitigation strategy for existing school buildings. Structure and Infrastructure Engineering, 15(2), 137-151. https://doi.org/10.1080/15732479.2018.1527373
Baker, J. W., y Cornell, C. A. (2005). A vector-valued ground motion intensity measure consisting of spectral acceleration and epsilon. Earthquake Engineering & Structural Dynamics, 34(10), 1193-1217. https://doi.org/10.1002/eqe.474
Bojórquez, E., Iervolino, I., Reyes-Salazar, A., y Ruiz, S. (2012). Comparing vector-valued intensity measures for fragility analysis of steel frames in the case of narrow-band ground motions. Engineering Structures, 45, 472-480. https://doi.org/10.1016/j.engstruct.2012.07.002
Bojórquez, E., Leyva, H., Reyes-Salazar, A., Fernández, E., Bojórquez, J., Leal, J., y Serrano, J. (2018). Diseño óptimo multiobjetivo de edificios de concreto reforzado usando algoritmos genéticos. Revista Ingeniería Sísmica(99). https://doi.org/10.18867/ris.99.484
Bojórquez, J., Ruiz, S. E., Ellingwood, B., Reyes-Salazar, A., y Bojórquez, E. (2017). Reliability-based optimal load factors for seismic design of buildings. Engineering Structures, 151(15), 527-539.
Chen, H., Xie, Q., Lan, R., Li, Z., Xu, C., y Yu, S. (2015). Seismic damage to schools subjected to Nepal earthquakes. Natural Hazards, 88(1), 247-284. https://doi.org/10.1007/s11069-017-2865-8
De León, D. (1996). Integrating socio-economics in the development of criteria for the aseismic design of reinforced concrete structures. Ph. D. Thesis, University of California, Departament of Civil and Envionmental Engineering, Irvine California.
De León, D., y Donaji, A. (2020). Towards a resilient design and retrofit of schools in Mexico. The 17th Wolrd Conference on Earthquake Engineering. Sendai, Japón.
De León, D., y Garcia-Manjarrez, J. (2021). Cost and reliability of retrofit alternatives for schools located on seismic zones. Earthquakes and Structures, 21(5), 505-514. https://doi.org/10.12989/eas.2021.21.5.505
De León, D., Ang, A., y Guadarrama, D. (2023). Reliability-based selection of retrofit works for schools under seismic hazard. Natural Hazards Review, 24(3). https://doi.org/10.1061/NHREFO.NHENG-1408
Di Ludovico, M., Digrisolo, A., Moroni, C., Graziotti, F., Manfredi, V., Prota, A., . . . Manfredi, G. (2019). Remarks on damage and response of school buildings after the Central Italy earthquake sequence. Bulletin of Earthquake Engineering, 17(10), 5679-5700. https://doi.org/10.1007/s10518-018-0332-x
Di Ludovico, M., Santoro, A., De Martino, G., Moroni, C., Prota, A., Dolce, M., y Manfredi, G. (2019). Cumulative damage to school buildings following the 2016 central Italy earthquake sequence. Bolletino di Geofisica Teorica ed Applicata, 60(2), 165-182.
Dong, G., Hajirasouliha, I., Pilakoutas, K., y Asadi, P. (2023). Multi-level performance-based seismic design optimisation of RC frames. Engineering Structures, 293, 116591. https://doi.org/10.1016/j.engstruct.2023.116591
Esteva, L. (1968). Bases para la formulación de decisiones de diseño sísmico. Tesis doctoral, Universidad Nacional Autónoma de México, Ciudad de México.
Esteva, L., Díaz, O., García-Pérez, J., Sierra, G., y Ismael, E. (2002). Life-cycle optimization in the establishment of performance-acceptance parameters for seismic design. Structural Safety, 24(2-4), 187-204. https://doi.org/10.1016/S0167-4730(02)00024-3
Gaceta de la Ciudad de la Ciudad de México. (2023). Normas Técnicas Complementarias para Diseño por Sismo. https://doi.org/10.1061/9780784415788
Gaceta Oficial de la Ciudad de México. (2020). Normas Técnicas Complementarias para Diseño por Sismo 2020.
Gaceta Oficial de la Ciudad de México. (2023). Norma Técnica Complementaria para Diseño y Construcción de Estructuras de Concreto.
García-Pérez, J., y Riaño, R. (2016). Optimum seismic zoning using an artificial neural network. Earthquake Spectra, 32(32), 1187-1207. https://doi.org/10.1193/070114eqs092m
García-Pérez, J., Castellanos, F., y Díaz, O. (2005). Occupancy importance factor in earthquake engineering. Engineering Structures, 27(11), 1625-1632. https://doi.org/10.1016/j.engstruct.2005.05.017
Goda, K., y Hong, H. (2006). Optimal seismic design for limited planning time horizon with detailed seismic hazard information. Structural Safety, 28(3), 247-260. https://doi.org/10.1016/j.strusafe.2005.08.001
Hasofer, A. (1973). Design for infrequent overloads. Earthquake Engineering & Structural Dynamics, 2(4), 387-388. https://doi.org/10.1002/eqe.4290020408
Hosseini Varzandeh, S., y Mahsuli, M. (2023). Codified robust optimal design base shear of structures: Methodology and application to reinforced concrete buildings. Soil Dynamics and Earthquake Engineering, 174. https://doi.org/10.1016/j.soildyn.2023.108200
Hutchinson, T. C., y Chaudhuri, S. R. (2006). Simplified expression for seismic fragility estimation of sliding-dominated equipment and contents. Earthquake Spectra, 22(3), 709-732. https://doi.org/10.1193/1.2220637
INIFED. (2016). Diseño arquitectónico: Educación básica - primaria. Criterios normativos, Ciudad de México.
Jaimes, M., y Niño, M. (2017). Cost-benefit analysis to assess seismic mitigation options in Mexican public school buildings. Bulletin of Earthquake Engineering, 15, 3919-3942. https://doi.org/10.1007/s10518-017-0119-5
Jaimes, M., y Reinoso, E. (2013). Estimación de pérdidas por sismo de contenidos de edificios. Series del Insituto de Ingeniería, Instituto de Ingeniería UNAM.
Jaimes, M., Reinoso, E., y Esteva, L. (2013). Seismic vulnerability of building contents for a given occupancy due to multiple failure modes. Journal of Earthquake Engineering, 17(5). https://doi.org/10.1080/13632469.2013.771588
Kaveh, A., Fahimi-Farzam, M., y Kalateh-Ahani, M. (2015). Performance-based multi-objective optimal design of steel frame structures: nonlinear dynamic procedure. Scientia Iranica, 22(2), 373-387.
Koohfallah, K., Dehkordi, M., D'Ayala, D., Ghodrati Amiri, G., Eghbali, M., y Samadian, D. (2024). Seismic resilience of typical steel school building and retrofitting options based on FEMA P-58 under mainshock-aftershock effects. Journal of Building Engineering, 86(108636). https://doi.org/10.1016/j.jobe.2024.108636
Liu, H., Huang, Y., y Liu, X. (2023). Seismic overturning fragility analysis for rigid blocks subjected to floor motions. Sustainability, 15(6). https://doi.org/10.3390/su15064945
Liu, H., Huang, Y., y Qu, Z. (2022). A discretely damped SDOF model for the rocking response of freestanding blocks. Earthquake Engineering and Engineering Vibratio, 21, 729-740. https://doi.org/10.1007/s11803-022-2085-4
Liu, S.-C., Dougherty, M., y Neghabat, F. (1976). Optimal aseismic design of building and equipment. Journal of the Engineering Mechanics Division, 102(3). https://doi.org/10.1061/JMCEA3.0002121
Lu, W., Zhan, X., Qiu, H., y Wu, Y. (2023). Numerical modelling strategies for column rocking behavior in traditional timber structures. International Journal of Architectural Heritage, 18(10), 1535-1550. https://doi.org/10.1080/15583058.2023.2242807
Mazzoni, S., Fenves, G., y Scott, M. (2006). OpenSees command language manual. University of California, Berkeley.
McKenna, F., Fenves, G., y Scott, M. (2000). Open system for earthquake engineering simulation. University of California, Berkeley.
NIST/ATC. (2017). Guidelines for nonlinear structural analysis for design of buildings Part IIb Reinforced Concrete Moment Frames. https://doi.org/10.6028/NIST.GCR.17-917-46v3
Ordaz, M., Salgado-Gálvez, M., Pérez-Rocha, L., Cardona, O., y Mena-Hernández, U. (2017). Optimum earthquake design coefficients based on probabilistic seismic hazard analyses: theory and applications. Earthquake Spectra, 33(4), 1455-1474. https://doi.org/10.1193/110116eqs189m
Orellana, M., Ruiz, S., Bojórquez, J., Reyes-Salazar, A., y Bojórquez, E. (2021). Optimal load factors for earthquake-resistant design of buildings located at different types of soils. Journal of Building Engineering, 34(102026). https://doi.org/10.1016/j.jobe.2020.102026
Park, S., y Kwon, J. H. (2003). Optimal drift design model for multi-story buildings subjected to dynamic lateral forces. The Structural Design of Tall and Special Buildings, 12(4), 317-333. https://doi.org/10.1002/tal.224
Rackwitz, R. (2000). Optimization — the basis of code-making and reliability verification. Structural Safety, 22(1), 27-60. https://doi.org/10.1016/S0167-4730(99)00037-5
Reinoso, E., Jaimes, M., y Esteva, L. (2010). Seismic vulnerability of an inventory of overturning objects. Journal of Earthquake Engineering, 14(7), 1008-1021. https://doi.org/10.1080/13632460903527971
Rodríguez, A., Ruiz, S., Bojórquez, E., y Reyes-Salazar, A. (2020). Influence of spectral acceleration correlation models on conditional mean spectra and probabilistic seismic hazard analysis. Earthquake Engineering & Structural Dynamics, 50(2), 309-328.
Rosenblueth, E. (1976). Optimum design for infrequent disturbances. Journal of the Structural Division, 102(9), 1807-1825. https://doi.org/10.1061/JSDEAG.0004431
Rosenblueth, E., y Mendoza, E. (1971). Reliability optimization in isostatic structures. Journal of the Engineering Mechanics Division, 97(6), 1625-1642. https://doi.org/10.1061/JMCEA3.0001521
Rubinstein, R. Y., y Kroese, D. P. (1981). Simulation and the Monte Carlo Method. New York: John Wiley & Sons, Inc.
Singh, S., Mena, E., Castro, R., y Carmona, C. (1987). Empirical prediction of ground motion in Mexico City from coastal earthquakes. Bulletin of the Seismological Society of America, 77(5), 1862-1867. https://doi.org/10.1785/BSSA0770051862
Singh, S., Reinoso, E., Arroyo, D., Ordaz, M., Cruz-Atienza, V., Pérez-Campos, X., . . . Hjörleifsdóttir, V. (2018). Deadly intraslab Mexico earthquake of 19 September 2017 (Mw 7.1): Ground motion and damage pattern in Mexico City. Seismological Research Letters, 89(6), 2193-2203. https://doi.org/10.1785/0220180159
The European Union per Regulation 305/2011. (2004). Eurocode 8: Design of structures for earthquake resistance - Part I: General rules, seismic actions and rules for buildings.
Tolentino, D., y Ruiz, S. (2015). Time-dependent confidence factor for structures with cumulative damage. Earthquake Spectra, 31(1), 441-461. https://doi.org/10.1193/010912EQS008M
Vamvatsikos, D., y Cornell, C. A. (2011). Incremental dynamic analysis. Earthquake Engineering & Structural Dynamics, 31(3), 491-514. https://doi.org/10.1002/eqe.141
Zain, M., Dackermann, U., y Prasittisopin, L. (2024). Machine learning (ML) algorithms for seismic vulnerability assessment of school buildings in high-intensity seismic zones. Structures, 70. https://doi.org/10.1016/j.istruc.2024.107639
Zou, X.-K., y Chan, C.-M. (2005). An optimal resizing technique for seismic drift design of concrete buildings subjected to response spectrum and time history loadings. Computers & Structures, 83(19-20), 1689-1704. https://doi.org/10.1016/j.compstruc.2004.10.002
Zou, X.-K., y Chan, C.-M. (2005). Optimal seismic performance-based design of reinforced concrete buildings using nonlinear pushover analysis. Engineering Structures, 27(8), 1289-1302. https://doi.org/10.1016/j.engstruct.2005.04.001

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal Earthquake Engineering

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.