DISEÑO SÍSMICO SUSTENTABLE DE ESTRUCTURAS EQUIPADAS CON DISIPADORES VISCOSOS
DOI:
https://doi.org/10.18867/ris.112.638Palabras clave:
FEMA P-58, amortiguamiento viscoco, impacto ambiental, diseño sustentableResumen
La ingeniería sísmica moderna no únicamente busca salvaguardar la vida humana durante un evento sísmico, si no también controlar las pérdidas económicas y, más recientemente, el impacto ambiental asociado con la rehabilitación del daño estructural después de un sismo. La incorporación de dispositivos de amortiguamiento viscoso en edificaciones puede ayudar a satisfacer tales exigencias. Sin embargo, inclusive satisfaciendo las demandas de resistencia y deformación, el diseño de estos dispositivos no garantiza la óptima selección de sus propiedades histeréticas. En este estudio se diseña un conjunto de edificaciones que incorporan dispositivos viscosos cuyas propiedades histeréticas se varían para tener diversas alternativas de diseño y, enseguida, se evaluá su desempeño con la metodología FEMA P-58. Así, para abordar las tres dimensiones de la sustentabilidad, se definió como diseño optimo a aquel donde se minimice la pérdida anual esperada en términos de costos de reparación (economía), número de heridos (social) y emisiones de dióxido de carbono (ambiental). Los resultados indicaron que la selección cuidadosa de los parámetros histeréticos de los sistemas de disipación de energía puede reducir significativamente las pérdidas esperadas, en comparación con edificaciones que no incorporan sistemas de amortiguamiento suplementario.
Descargas
Citas
American Society of Civil Engineers (ASCE) (2017a), “Minimum Design Loads and Associated Criteria for Buildings and Other Structures (ASCE/SEI 7-16)”, American Society of Civil Engineers: Reston, VA, USA. https://doi.org/10.1061/9780784414248
American Society of Civil Engineers (ASCE) (2017b). “Seismic Evaluation and Retrofit of Existing Buildings, (ASCE/SEI 41-17)”, American Society of Civil Engineers: Reston, VA, USA. https://doi.org/10.1061/9780784414859
Applied Technology Council (ATC) (1996), “Seismic Evaluation and Retrofit of Concrete Building (ATC-40)”. Applied Technology Council: Redwood City, CA, USA.
Architecture 2030. 2013. “Why the building sector?”, Recuperado 05 Enero, 2023 de http://architecture2030.org/buildings_problem_why/
Baker, J W (2015), “Efficient analytical fragility function fitting using dynamic structural analysis”, Earthquake Spectra, Vol. 31, No 1, pp. 579-599. https://doi.org/10.1193/021113EQS025M
Baker, J W y CA Cornell (2006), “Spectral shape, epsilon and record selection”, Earthquake Engineering and Structural Dynamics, Vol. 35, No. 9, pp. 1077-1095. https://doi.org/10.1002/eqe.571
Banazadeh, M, A Ghanbari y R Ghanbari (2017). “Seismic performance assessment of steel moment-resisting frames equipped with linear and nonlinear fluid viscous dampers with the same damping ratio”. Journal of Constructional Steel Research, Vol. 136, pp. 215-228. https://doi.org/10.1016/j.jcsr.2017.05.022
Bianchini, M, P P Diotallevi y J W Baker (2009), “Prediction of Inelastic Structural Response Using an Average of Spectral Accelerations”, In: Proceedings of the 10th International Conference on Structural Safety and Reliability (ICOSSAR09), Osaka, Japon.
Carnegie Mellon University Green Design Institute (CMU GDI) (2008). “Economic Input-Output Life Cycle Assessment (EIO-LCA)”, US 1997 Industry Benchmark model, Recuperado 22 Noviembre, 2023 de http://www.eiolca.net
Carr, A J (2010), “RUAUMOKO Manual: User Manual for the 3 Dimensional Version Ruaumoko 3D”, Unversity of Cantebury, Christchurch, NZ. https://doi.org/10.13140/RG.2.1.4755.8567
Carrillo-Bueno, C A (2016), “Influencia del deterioro por corrosión en la confiabilidad de edificios de concreto reforzado”. Tesis de maestría, Universidad Nacional Autónoma de México, UNAM.
Comision Federal de Electricidad (CFE) (2015). “Manual de Diseño de Obras Civiles Diseño por Sismo”, Instituto de Investigaciones Eléctricas, Comisión Federal de Electricidad, Ciudad de Mexico, Mexico.
Colín, I F (2020). “Aplicacion de Analisis de Ciclo Vida para un Edificio Residencial con Criterios de Sustentabilidad”, Tesis Doctoral, Instituto Politécnico Nacional, Ciudad de Mexico, Mexico, p.117. http://tesis.ipn.mx/handle/123456789/28847
Comber, M V, C Poland y M Sinclair (2012), “Environmental Impact Seismic Assessment: Application of Performance-Based Earthquake Engineering Methodologies to Optimize Environmental Performance”, In: Proceedings of the Structures Congress ASCE, Chicago, IL, USA, pp. 910-921. https://doi.org/10.1061/9780784412367.081
Computers and Structures Inc. (CSI) (2018). Structural Software for Building Analysis and Design, ETABS
Contreras-Jiménez, J C, F Morales-Mendoza, R Corona-Armenta, O Montaño-Arango y J Medina-Marín (2017), “Evaluación económica y ambiental de diseños estructurales de edificaciones mediante análisis de ciclo de vida basado en entradas y salidas”, Dyna (Spain), Vol. 92, No. 6, 626-631. https://doi.org/10.6036/8177
Cornell, C A y H Krawinkler (2000), “Progress and Challenges in Seismic Performance Assessment”, PEER Center News, Vol. 3, No. 2, pp. 1-4.
Del Gobbo, G M, A Blakeborough y M S Williams (2018), “Improving total-building seismic performance using linear fluid viscous dampers”, Bulletin of Earthquake Engineering, Vol. 16, No 9, pp. 4249-4272. https://doi.org/10.1007/s10518-018-0338-4
Deierlein, G y V Victorsson (2009), “Fragility Curves for Components of Steel SMF Systems”. Background document: FEMA P-58/BD-3.8.3. Washington, DC, USA
Dong, Y y D M Frangopol (2016), “Performance‐based seismic assessment of conventional and base‐isolated steel buildings including environmental impact and resilience”, Earthquake Engineering and Structural Dynamics, Vol. 45, No. 5, 739-756. https://doi.org/10.1002/eqe.2682
Eads, L, E Miranda y D G Lignos (2015), “Average spectral acceleration as an intensity measure for collapse risk assessment”, Earthquake Engineering and Structural Dynamics, Vol. 44, No. 12, 2057-2073. https://doi.org/10.1002/eqe.2575
Feese, C, Y Li y W M Bulleit (2015), “Assessment of Seismic Damage of Buildings and Related Environmental Impacts”, Journal of Performance of Constructed Facilities, Vol. 29, No. 4, pp. 1-10. https://doi.org/10.1061/(asce)cf.1943-5509.0000584
Federal Emergency Management Agency (FEMA) (1997), “NEHRP guidelines for the seismic rehabilitation of buildings”, Rep. No. FEMA-273, Washington, DC, USA.
Federal Emergency Management Agency (FEMA) (2007) “Interim Testing Protocols for Determining the Seismic Performance Characteristics of Structural and Nonstructural Components”, Rep. No. FEMA P-58-3, Washington, DC, USA.
Federal Emergency Management Agency (FEMA) (2018a) “Seismic performance assessment of buildings”, volume1-methodology, Rep. No. FEMA 461, Washington, DC, USA.
Federal Emergency Management Agency (FEMA) (2018b) “Seismic performance assessment of buildings”, volume 3- Supporting Materials and Background Documentation, Rep. No. FEMA P-58-3, Washington, DC, USA.
Gámez-García, D C, H Saldaña-Márquez, J M Gómez-Soberón, S P Arredondo-Rea, M C Gómez-Soberón y R Corral-Higuera (2019), “Environmental challenges in the residential sector: Life cycle assessment of Mexican social housing”, Energies, Vol.12, No. 14. https://doi.org/10.3390/en12142837
Gencturk, B, K Hossain y S Lahourpour (2016), “Life cycle sustainability assessment of RC buildings in seismic regions”, Engineering Structures, Vol. 110, No. 1, pp. 347-362. https://doi.org/10.1016/j.engstruct.2015.11.037
Ghobarah, A (2001), “Performance-based design in earthquake engineering: State of development”, Engineering Structures, Vol. 23, No. 8, pp. 878-884. https://doi.org/10.1016/S0141-0296(01)00036-0
Güereca, L P, R O Sosa, H E Gilbert y N S Reynaga (2015), “Life cycle assessment in Mexico: overview of development and implementation”, International Journal of Life Cycle Assessment, Vol. 20, No. 3, pp. 311-317. https://doi.org/10.1007/s11367-014-0844-9
Günay, S y K M Mosalam (2013), “PEER performance-based earthquake engineering methodology, revisited”, Journal of Earthquake Engineering, Vol. 17, No. 6, pp. 829-858. https://doi.org/10.1080/13632469.2013.787377
Hossain, K A y B Gencturk (2016), “Life-Cycle Environmental Impact Assessment of Reinforced Concrete Buildings Subjected to Natural Hazards”, Journal of Architectural Engineering, Vol. 22, No. 4. https://doi.org/10.1061/(asce)ae.1943-5568.0000153
Moehle, J y G G Deierlein (2004), “A framework methodology for performance-based earthquake engineering”, In: Proceedings of the 13th World Conference on Earthquake Engineering, No. 679, Vancouver, BC, Canada. https://www.researchgate.net/publication/228706335
Kazantzi, A K y D Vamvatsikos (2015), “Intensity measure selection for vulnerability studies of building classes”, Earthquake Engineering and Structural Dynamics, Vol. 44, No. 15, pp. 2677-2694. https://doi.org/10.1002/eqe.2603
Kohrangi, M, S R Kotha, y P Bazzurro (2018), “Ground-motion models for average spectral acceleration in a period range: Direct and indirect methods”. Bulletin of Earthquake Engineering, Vol. 16, No. 1, pp. 45-65. https://doi.org/10.1007/s10518-017-0216-5
Lin, W H and A K Chopra (2002), “Earthquake response of elastic SDF systems with non-linear fluid viscous dampers”, Earthquake Engineering and Structural Dynamics, Vol. 31, No. 9, pp. 1623-1642. https://doi.org/10.1002/eqe.179
Lowes, L y J Li (2009), “Fragility Functions for Reinforced Concrete Moment Frames”, Background document: FEMA P-58/BD-3.8.6, Washington, DC, USA
Menna, C, D Asprone, F Jalayer, A Prota y G Manfredi (2013), “Assessment of ecological sustainability of a building subjected to potential seismic events during its lifetime”, International Journal of Life Cycle Assessment, Vol. 18, No. 2, pp. 504-515. https://doi.org/10.1007/s11367-012-0477-9
Gobierno de la Ciudad de México (GCDMX) (2020). “Normas Técnicas Complementarias para Diseño por Sismo (NTCDS)”, Gobierno de la Ciudad de México: CDMX, México.
Orozco Hernández, D A (2019), “Pentahélice: Programa Estratégico Nacional de Tecnología e Innovación Abierta (PENTA)”. División de ingenierías Civil y Geomática, UNAM. Recuperado 07 Diciembre, 2023 de http://dicyg.fi-c.unam.mx:8080/Site/licenciatura/Convocatoria2019.pdf
Park, H S, J W Hwang y B K Oh (2018), “Integrated analysis model for assessing CO2 emissions, seismic performance, and costs of buildings through performance-based optimal seismic design with sustainability”, Energy and Buildings, Vol. 158, No. 1, pp. 761-775. https://doi.org/10.1016/j.enbuild.2017.10.070
Passoni, C, A Marini, A Belleri y C Menna (2021), “Redefining the concept of sustainable renovation of buildings: State of the art and an LCT-based design framework”, Sustainable Cities and Society, Vol. 64, No.102519. pp. 1-24. https://doi.org/10.1016/j.scs.2020.102519
Porter, K, K Farokhnia, D Vamvatsikos y I Cho (2015), “Guidelines for component- based analytical vulnerability assessment of buildings and nonstructural elements”, GEM technical report 2014-13, version 1.0.0. Pavia: Global Earthquake Model.
Quispe, I, I Vázquez-Rowe, R Kahhat, A P Arena y N Suppen (2017), “Preface: Life Cycle Assessment: A Tool for Innovation in Latin America”, International Journal of Life Cycle Assessment, Vol. 22, No. 4, pp. 469-478. https://doi.org/10.1007/s11367-016-1178-6
Ramberg, W y W R Osgood (1943), “Description of stress-strain curves by three parameters”, Technical Note No. 902, National Advisory Committee on Aeronautics, Washington, DC, USA.
Ramirez, O M, M Constantinou, C A Kircher, A Whittaker, M Johnson, J D Gomez y C Chrysostomou (2001), “Development and Evaluation of simplified procedures for analysis and design of buildings with passive energy dissipation systems”. Technical Rep. No. MCEER-00–0010, Revision, 1.
Salgado, R A, D Apul y S Guner (2020), “Life cycle assessment of seismic retrofit alternatives for reinforced concrete frame buildings”, Journal of Building Engineering, Vol. 28, No. 101064, pp. 1-12. https://doi.org/10.1016/j.jobe.2019.101064
Salgado, R A y S Guner (2021), “A structural performance-based environmental impact assessment framework for natural hazard loads”, Journal of Building Engineering, Vol. 43, No.102908, pp. 1-13. https://doi.org/10.1016/j.jobe.2021.102908
Santos Santiago, M A, S E Ruiz, A Santos Santiago y F Valenzuela Beltran (2017), “Comparación de Dos Métodos Simplificados para el Diseño Sísmico de Edificios con Amortiguadores Viscosos No Lineales”, Procedente del XXI Congreso Nacional de Ingeniería Sísmica, Jalisco, GDL, México.
Santos-Santiago, M A, S E Ruiz y F Valenzuela-Beltrán (2022), “Influence of Higher Modes of Vibration on the Seismic Response of Buildings with Linear and Nonlinear Viscous Dampers”, Journal of Earthquake Engineering, Vol. 26, No. 8, pp. 3914-3937. https://doi.org/10.1080/13632469.2020.1822223
Santos-Santiago, M A, S E Ruiz y L Cruz-Reyes (2022), “Optimal design of buildings under wind and earthquake, considering cumulative damage”, Journal of Building Engineering, Vol. 56, No. 104760. https://doi.org/10.1016/j.jobe.2022.104760
Seligson, H A (2008), “Casualty Consequence Function and Building Population Model Development”, Background document: FEMA P-58/BD-3.7.8, Washington, DC, USA
Servicio Sismologico Nacional (SSN). Mapas de sismicidad anual. Recuperado 04 Febrero, 2023 de http://www.ssn.unam.mx/sismicidad/mapas-de-sismicidad-anual/
Silva, A, J M Castro y R Monteiro (2020), “A rational approach to the conversion of FEMA P-58 seismic repair costs to Europe”, Earthquake Spectra, Vol. 36, No. 3, pp. 1607-1618. https://doi.org/10.1177/8755293019899964
Simonen, K, M Huang, C Aicher y P Morris (2018). “Embodied carbon as a proxy for the environmental impact of earthquake damage repair”, Energy and Buildings, Vol. 164, No. 1, pp. 131-139. https://doi.org/10.1016/j.enbuild.2017.12.065
Reynaga, N, J Aguillón Robles y G J Arista González (2013), “Análisis de Ciclo de Vida y Ecodiseño para la Construcción en México”, Universidad Autónoma de San Luis Potosí, México.
Takeda, T, M A Sozen y N N Nielsen (1970), “Reinforced Concrete Response to Simulated Earthquakes”, Journal of the Structural Division, Vol. 96, No. 12, pp. 2557-2573. https://doi.org/10.1061/JSDEAG.0002765
Tsantaki, S, C Jäger y C Adam (2012), “Improved seismic collapse prediction of inelastic simple systems vulnerable to the P-delta effect based on average spectral acceleration”, In: Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal. http://www.iitk.ac.in/nicee/wcee/article/WCEE2012_0287.pdf
Turner and Townsend (2021). International construction market survey, Turner and Townsend, p. 69.
United States Government (USG) (2022), “CPI Inflation Calculator”, U.S. Bureau of Labor Statistics. Recuperado 10 Enero, 2023 de https://www.bls.gov/data/inflation_calculator.htm
Vamvatsikos, D y A Cornell (2001), “Incremental dynamic analysis”, Earthquake Engineering and Structural Dynamics, Vol. 31, No. 3, pp. 491-514. https://doi.org/10.1002/eqe.141
Wei, H H, M J Skibniewski, I M Shohet y X Yao (2016). “Lifecycle Environmental Performance of Natural-Hazard Mitigation for Buildings”, Journal of Performance of Constructed Facilities, Vol. 30, No. 3, pp. 1-13. https://doi.org/10.1061/(asce)cf.1943-5509.0000803
Yang, T Y, J Moehle, B Stojadinovic y A Der Kiureghian (2009), “Seismic Performance Evaluation of Facilities: Methodology and Implementation”, Journal of Structural Engineering, Vol. 135, No. 10, pp. 1146-1154. https://doi.org/10.1061/(asce)0733-9445(2009)135:10(1146)
Yang, Y, W W Ingwersen, T R Hawkins, M Srocka y D E Meyer (2017), “USEEIO: A new and transparent United States environmentally-extended input-output model”, Journal of Cleaner Production, Vol. 158, No. 1, pp. 308-318. https://doi.org/10.1016/j.jclepro.2017.04.150
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Revista de Ingeniería Sísmica
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.