DEFINITION OF RECOVERY TIMES AND EXPECTED LOSS OF FUNCTIONALITY FOR THE EVALUATION OF SEISMIC RESILIENCE IN PUBLIC SCHOOLS IN MEXICO

Authors

  • Mauro Niño Lazaro Facultad de Ingeniería , Universidad Nacional Autónoma de México
  • Carlos Emiliano González Calva Facultad de Ingeniería, UNAM
  • A. Gustavo Ayala Milián Instituto de Ingeniería, UNAM

DOI:

https://doi.org/10.18867/ris.112.636

Keywords:

Seismic resilience, Structural Design, Vulnerability, Functionality, Recovery times

Abstract

Recent concerns regarding prolonged downtimes and functionality losses observed after seismic events have made it clear that seismic design is heading towards a resilience-based approach. However, currently there is still no clear consensus on how to quantify resilience, or the parameters that defining it (functionality and downtimes) nor there is an established criterion to interpret a given resilience value. In this document a probabilistic approach to estimate recovery times and functionality loss in buildings is presented, which allows to estimate seismic resilience, at the same time delay times and nonstructural elements are taken into consideration. To do so, simple models to associate structural response and the resilience parameters (recovery time and functionality) are defined. A database for public school buildings in Puebla City, created by an internal work group, was then used to obtain the expected times and expected functionality, allowing for resilience quantification. Additionally, a classification of resilience, recovery times and functionality is presented, based on target values obtained with a cost/benefit analysis, this helped the identification of weak elements in the educative Mexican infrastructure. The results showed that the inclusion of delay times and non-structural elements in the resilience quantification is mandatory to not incur in an overestimation of resilience, at the same time, according to the categorization proposed, it was found that a significant portion of school buildings in Puebla City are underprepared in a resilience context.

Downloads

Download data is not yet available.

References

Alcocer, S., Bautista, R., y Valencia, G. (2019). “Desarrollo de capacidades nacionales para aumentar la resiliencia de edificios de concreto y mampostería con un enfoque de diseño por desempeño. Revisión de la literatura y del estado del arte de metodologías de evaluación post-sísmica”. Proyecto CONACyT-FORDECyT. Ciudad de México.

Almulti, I., y Willford, M. (2013). “Resilience-based Earthquake Design Initiative fot the Next Generation of Buildings”. Grupo Arup.

Anwar, G., Dong, Y., y Zhai, C. (2019). “Performance-based probabilistic framework for seismic risk, resilience, and sustainability assessment of reinforced concrete structures”, Advances in Structural Engineering, 1-19 https://doi.org/10.1177/1369433219895363

Baggio, C., Bernardini, A., Colozza, R., Corazza, L., Della Bella, M., Di Paaquele, G., Dolce, M., Orsini, G., Papa, F., y Zuccaro, G. (2007). “Field Manual for post-earthquake damage and safety assessment and short-term countermeasures”. JRC Scientific and Technical Reports.

Biondini, F., Camnasio, E. y Titi, A. (2015) “Seismic resilience of concrete structures under corrosion”. Earthquake Engineering and Structural Dynamics, 2445-2466.

Bruneau, M., Chang, S., Eguchi, R., Lee, G., O´Rourke, T., Reinhorn, A., . . . Winterfeldt, D. (2003). “A framework to quantitatively assess and enhance the seismic resilience of communities”. Earthquake Spectra, 733-752.

Cardona, O., Ordaz, M., Reinoso, E., y Yamín, L. B. (2010). “CAPRA- Comprehensive approach to probabilistic risk assessment: International initiative for risk management effectiveness”. Proceedings of the 14th European conference on earthquake engineering, Ohrid, Macedonia (2010).

Cimellaro, G., Reinhorn, A., and Bruneau, M. (2010). “Framework for analytical quantification of disaster resilience”. Engineering Structures, 3639-3649.

Clough, R.W., y Johnson, S.B. (1966). “Effect of stiffness degradation on earthquake ductility requirements”. Proceedings, Second Japan National Conference on Earthquake Engineering, 227-232.

Comerio, M. C. (2006). “Estimating Downtime in Loss Modeling”. Earthquake Spectra, Vol. 22, 349-365.

Ghorawat, S., (2011). “Rapid loss modeling of death and downtime caused by earthquake induced damage to structures”. Tesis de maestría. Texas A&M University.

Gobierno Ciudad de México, (2017). “Normas para la rehabilitación sísmica de edificios de concreto dañados por el sismo del 19 de septiembre de 2017”. Gaceta Oficial de la Ciudad de México.

González, C., Niño, M., y Jaimes, M., (2018). “Seismic resilience estimation in public school buildings”. Memorias del XXI Congreso Nacional de Ingeniería Estructural, Campeche, México.

González, C., Niño, M., y Jaimes, M., (2020). “Event-based assessment of seismic resilience in Mexican school buildings”. Bulletin of Earhtquake Engineering.

Gutiérrez, J., y Ayala, G. (2022). “Análisis de la resiliencia sísmica de edificios”. Ingeniería Sísmica no. 107., https://doi.org/10.18867/ris.107.603.

FEMA-P-58. (2018). “Seismic performance assessment of buildings, Vol.1 Methodology”. Redwood City: Federal Emergency Management Agency.

FEMA-P-58. (2018). “Seismic performance assessment of buildings, Vol.2 Implementation Guide”. Redwood City: Federal Emergency Management Agency.

Feng, K., Wang, N., Li, Q., y Lin, P. (2017). “Measuring and enhancing resilience of building portfolios considering the functional interdepence among community sectors”. Structural Safety, Vol. 66, 118-126.

Fontana, C., Cianci, E., y Moscatelli, M. (2020) “Assessing Seismic Resilience of School Educational Sector”. An attempt to establish the initial conditions in Calabria Region, Southern Italy International Journal of Disaster Risk Reduction, https://doi.org/10.1016/j.ijdrr.2020.101936.

Hall, D. y Giglio, N. (2016). “Architectural Graphic Standards 12th edition”. American Institute of Architects.

Hidalgo, P. A., y Arias, A. (1990). “New Chilean code for earthquake resistant design of buildings.” Memorias del 4° Congreso Nacional de US en Ingeniería Sísmica, Vol. 2, 927–936. Palm Springs, CA: Np.

Ibarra, L., Medina, R., y Krawinkler, H. (2005). “Hysteretic models that incorporate strength and stifness deterioration”. Earthquake Engineering and Structural Dynamics, 1489-1511.

Jaimes, M., y Niño, M. (2017). “Cost-Benefit analysis to assess seismic mitigation options in Mexican public school buildings”. Bull Earthquake Engineering.

Jaimes, M., y Candia, G. (2020). “Seismic risk of sliding ground-mounted rigid equipment”. Engieering structures 204.

McKenna, F., Mazzooni, S., Scott, M., y Fenves, G. (2009). “Open system for earthquake engineering simulation”. Pacific Earthquake Engineering Research Center.

Mieler, M., Stojadinovic, B., Budnitz, R., Comerio, M., y Mahin, S. (2015). “A framework for linking community-resilience goals to specific performance targets for the built environment”. Earthquake spectra, Vol 31, pp. 1267-1283.

Newmark, N. M., y W. J. Hall. (1973). “Seismic design criteria for nuclear reactor facilities”, Rep. No. 46. Building Practices for Disaster Mitigation National Bureau of Standards. Washington, DC: US Dept. of Commerce. pp. 209–236

Noyola, V., Soca, J., Aguilera, M., y Martínez, O. (2016). “Infraestructura , Mobiliario y Materiales de Apoyo Educativo en las Escuelas Primarias ECEA 2014”. INEE. Ciudad de México.

Ortiz, D., y Reinoso, E., (2020). “Tiempo de interrupción de negocios en la Ciudad de México por daños directos y efectos indirectos en edificios a causa del sismo del 19s de 2017”. Revista de Ingeniería Sísmica No. (104).

Rojahn, C., Johnson, L., O´Rourke, T., Cedillos, V., McAllister, T. y McCabe, S., (2019). “Increasing Community Resilience Through Improved Lifeline Infrastructure Performance”. The Bridge. pp. 34-42.

Samadian, D., Ghafoy-Ashtiany, M., Naderpour, H., y Eghbali, M. (2019). “Seismic resilience evaluation based on vulnerability curves for existing and retrofitted typical RC school buildings”. Soil Dynamics and Earthquake Engineering.

Taghavi, S., y Miranda, E. (2003). “Response assessment of nonstructural building elements”. Berkeley, California: Pacific Earthquake Engineering Research Center.

Takeda, T., Sozen, M., y Nielson, N. (1970). “Reinforced concrete response to simulated earthquakes”. ASCE Journal of the Structural Division, pp. 2557-2573.

Tanik, B., Inel, M. y Ozer, E. (2021). “Effect of Soil-Structure interaction on seismic behavior of mid- and low-rise buildins”. ASCE International Journal of Geomechanics. DOI:10.1061/(ASCE)GM.1943-5622.0001944.

Tena-Colunga, A. y Nangullasmú-Hernández, H. (2023). “Resilient seismic design of reinforced concrete framed buildings with metallic fuses including soil-structure interaction effects”. Soil Dynamics and Earthquake Engineering 164.

Yang, T.Y., Tung, D.P. y Li, Y. (2018). “Equivalent Energy Design Procedure for Earthquake Resilient Fused Structures”. Earthquake Spectra, Vol 34, No 2. Pp. 1-21.

Youance, S., M.J.. Nollet, y G. McClure, (2012). “Post-earthquake functionality of critical facilities: A hospital case study”. Memorias del 15° congreso mundial de ingeniería sísmica, Lisboa.

Published

2024-06-28 — Updated on 2024-07-19

Versions

How to Cite

Niño Lazaro, M., González Calva, C. E., & Ayala Milián, A. G. (2024). DEFINITION OF RECOVERY TIMES AND EXPECTED LOSS OF FUNCTIONALITY FOR THE EVALUATION OF SEISMIC RESILIENCE IN PUBLIC SCHOOLS IN MEXICO. Journal Earthquake Engineering, (112). https://doi.org/10.18867/ris.112.636 (Original work published June 28, 2024)

Issue

Section

Artículos

Metrics

Similar Articles

1 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.