CORRELACIÓN ENTRE LA ACELERACIÓN Y VELOCIDAD MÁXIMA DEL SUELO: APLICACIÓN EN EL ANÁLISIS DEL PELIGRO SÍSMICO

Autores/as

  • Miguel A. Jaimes UNAM
  • Eduardo Reinoso UNAM
  • Mario Ordaz UNAM
  • Cesar Arredondo UNAM

DOI:

https://doi.org/10.18867/ris.81.75

Resumen

Se propone una expresión que correlaciona los parámetros sísmicos de aceleración (Amax) y velocidad (Vmax) máximas del suelo que son usados frecuentemente en la estimación de daño en tuberías enterradas, contenidos y elementos no estructurales. Esta expresión permite estimar el valor del parámetro (Vmax) en función de Amax, por lo que, de una ecuación de atenuación existente para Amax y de un modelo de la actividad sísmica de la fuente, es posible realizar un análisis probabilista del peligro sísmico de tipo bivariado. Se presenta un ejemplo de la obtención del peligro sísmico bivariado para dos sitios de terreno firme.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abrahamson, N y W Silva (2008), “Summary of the Abrahamson & Silva NGA ground-motion relations”, Vol. 24, No. 1, pp. 67-97.

Akkar, S y J Bommer (2007), “Empirical Prediction Equations for Peak Ground Velocity Derived from Strong-Motion Records from Europe and the Middle East”, Bulletin Seismological Society of America, Vol. 97, pp. 511-530.

Al Abadi, A, N Lam y E Gad (2006), “A simple displacement-based model for predicting seismically induced overturning”, Journal of Earthquake Engineering, Vol. 10, No. 6, pp. 775-814.

Ambraseys, N (2006), “The prediction of earthquake peak ground acceleration in Europe”, Earthquake Engineering and Structural Dynamics, Vol. 24, No. 4, pp. 467-490.

Arredondo, C y E Reinoso (2008), “Influence of frequency content and peak intensities in the rocking seismic response of rigid bodies”, Journal of Earthquake Engineering, Vol. 12, No. 4, pp. 517-533.

Atkinson, G M (2006), “Single-Station Sigma”, Bulletin Seismological Society of America , Vol. 96, No. 2, pp. 446-455.

Baker, J y N Jarayam (2008), “Correlation of spectral acceleration values from NGA ground motion models”, Vol. 24, No. 1, pp. 299-317.

Boore, D y G Atkinson, (2008), “Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s”, Vol. 24, No. 1, pp. 99-138.

Campbell, K y Y Bozorgnia (2008), “NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 and 10 s”, Vol. 24, No. 1, pp. 139-171.

Chiou, B y R Youngs (2008), “An NGA model for the average horizontal component of peak ground motion and response spectra”, Vol. 24, No. 1, pp. 173-215.

Cornell, C A (1968), “Engineering seismic risk analysis”, Bulletin Seismological Society of America , Vol. 58, No. 5, pp. 1583-1606.

Cornell, C A y E Vanmarcke (1969), “The mayor influences on seismic risk”, Proc. 4th World Conference on Earthquake Engineering, Santiago de Chile, 15-19 July.

Choi, B y D Tung (2002), “Estimating sliding displacement of an unanchored body subjet to earthquake exitation”, Earthquake Spectra, Vol. 18, No. 4, pp. 601-613.

Esteva, L (1967). “Criterios para la construcción de espectros para diseño sísmico”, 3er Simposio Panamericano de Estructuras, Caracas, Venezuela.

Fajfar, P, T Vidic, y M Fischinger (1992), “On energy demand and supply in SDOF systems”, Nonlinear Sesismic Analysis and Design of Reinforced Concrete Buildings, P. Fajfar y H. Krawinkler, editors, Elsevier.

García, D, S K Singh, M Herráiz, M Ordaz y J F Pacheco (2005), “Inslab Earthquakes of Central Mexico: Peak Ground-Motion Parameters and Response Spectra”, Bulletin Seismological Society of America , Vol. 95, No. 6, pp. 2272-2282.

Housner, G W y P C Jennings (1982), “Earthquake Design Criteria”, EERI Monograph Series, Earthquake Engineering Research Institute, Oakland, C.A.

Ishiyama, Y (1982), “Motions of rigid bodies and criteria for overturning by earthquake excitation”, Earthquake Engineering and Structural Dynamics, No. 10, pp. 635-652.

Ishiyama, Y (1984), “Motions of rigid bodies and criteria for overturning by earthquake excitation”, Bulletin of the New Zealand Society for Earthquake Engineering, No. 17, 1, pp. 24-37.

Katayama, T, K Kubo y N Sato (1975), “Earthquake damage to water and gas distribution systems”, Proceedings of the U.S. National Conference on Earthquake Engineering, Ann Arbor, Michigan, pp. 396-405.

Konstantinidis, D y N Makris (2003), “Experimental and analytical studies on the seismic response of slender laboratory equipment”, Proceeding of seminar on seismic design, Performance and retrofit of nonstructural components in critical facilities, ATC-29-2, pp. 399-411.

Konstantinidis, D y N Makris (2006), “Experimental and analytical studies on the seismic response of freestanding and restrained laboratory equipment”, Proceeding of the 8th national conference on earthquake engineering, San Francisco, California, Paper No. 1619, pp. 18-22.

Newmark, N M y W J Hall (1982), “Earthquake Spectra and Design”, EERI Monograph Series, EERI, Oakland, California.

Ordaz, M, J M Jara y S K Singh (1989), “Riesgo sísmico y espectros de diseño en el estado de Guerrero”, VIII Congreso Nacional Ingeniería Sísmica, Acapulco, México, D40-D56.

Ordaz, M y S K Singh (1992), “Source spectra and spectral attenuation of seismic waves from Mexican earthquakes, and evidences of amplification in the hill zone of Mexico City”, Bulletin

Seismological Society of America, Vol. 82, No. 1, pp. 24-43.

Ordaz, M (2004), “Some integrals useful in Probabilistic Seismic Hazard Assessment”, Bulletin Seismological Society of America, Vol. 94, No. 4, pp. 1510-1516.

O’Rourke, M y G Ayala (1993), “Pipeline Damage to Wave Propagation”, Journal of Geotechnical Engineering, ASCE. Vol. 119, No. 9.

Oppenheim, A y R Schafer (1975), “Digital signal processing”, Prentice-Hall.

Pineda, O y M Ordaz (2004), “Mapas de velocidad máxima del suelo para la Ciudad de México”, Revista de Ingeniería Sísmica, Sociedad Mexicana de Ingeniería Sísmica, No. 71, pp. 37-62.

Pineda, O (2006), “Estimación de daño sísmico en tuberías enterradas”, Tesis de doctorado, Posgrado de Ingeniería, UNAM, pp. 1-102.

Psycharis, N, C Syngros, P Mimoglou y I Taflambas (2002), “Parametric investigation of the overturning of rigid blocks under dynamic loading”, 12th European Conference on Earthquake Engineering, London, U.K., 0.13, September.

Rathje, E M, N A Abrahamson y J D Bray (1998), “Simplified frequency content estimates of earthquake ground motions”, J. Geotech. Eng. Div., Am. Soc. Civ. Eng. Vol. 124, No. 2, 150–159.

Rathje, E M, F Farai, S Russell, y J D Bray (2004), “Empirical Relationships for frequency Content Parameters of Earthquake Ground Motions”, Earthquake Spectra, Vol. 20, No. 1, pp. 119-144.

Reinoso, E y M Ordaz (1999), “Spectral ratio for Mexico city from free-field recordings”, Earthquake Spectra, Vol, 15, No. 2, pp. 273-295.

Ridell, R (2007), “On Ground motion intensity indices”, Earthquake Spectra, Vol. 23, No. 1, pp. 147-173.

Santa-Cruz, S, M Ordaz y R Guerrero (2000), “Estimación de perdidas en contenidos dentro de naves industriales debido a sismos”, XII Congreso Nacional de Ingeniería estructural, León, Gto. México, Noviembre.

Tso, W, T Zhu y A Heidebrecht (1992), “Engineering implication of ground motion A/V ratio”, Soil

Dynamics and Earthquake Engineering, Vol. 11, No. 3, pp. 133-144.

Descargas

Publicado

2009-07-01

Cómo citar

Jaimes, M. A., Reinoso, E., Ordaz, M., & Arredondo, C. (2009). CORRELACIÓN ENTRE LA ACELERACIÓN Y VELOCIDAD MÁXIMA DEL SUELO: APLICACIÓN EN EL ANÁLISIS DEL PELIGRO SÍSMICO. Revista De Ingeniería Sísmica , (81), 19–35. https://doi.org/10.18867/ris.81.75

Número

Sección

Artículos

Métrica

Artículos más leídos del mismo autor/a

1 2 > >>